

# Synthesis and characterization of dinuclear *p*-, *m*- and *o*-xylyl bridged complexes of molybdenum and tungsten. The crystal structures of $\mu$ -*p*-xylyl*bis*( $\eta^5$ -pentamethyl-cyclopentadienyltricarbonylmolybdenum) and $\mu$ -m-xylyl-bis( $\eta^5$ pentamethylcyclopentadienyltricarbonyltungsten)

Ching-Jane Lin,<sup>a</sup> Yen-Hsien Chen,<sup>a</sup> See Lin<sup>a</sup>\*, Yuh-Sheng Wen<sup>b</sup> and Ling-Kang Liu<sup>b+</sup>

<sup>a</sup> Department of Chemistry, National Changhua University of Education Changhua, Taiwan 50058 R.O.C.

<sup>b</sup> Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529 R.O.C.

(Received 10 January 1997; accepted 10 May 1997)

**Abstract**—The reactions of  $\eta^{5}$ -Cp\*M(CO)<sub>3</sub>Na (M = Mo, W) with  $\alpha, \alpha'$ -p-, m- and o-dichloro-xylenes yielded p-, m- and o-xylyl bridged dinuclear complexes of  $\eta^{5}$ -Cp\*M(CO)<sub>3</sub> in high yields. All of such new complexes are stable to air and water, even stable in dilute acids and bases. © 1997 Elsevier Science Ltd

Keywords: molybdenum; tungsten; carbonyls; xylyl bridged complexes

A considerable number of  $\sigma$ - and  $\pi$ -allyl derivatives [1–2] as well as  $\sigma$ - and  $\pi$ -benzyl derivatives [3–4] of transition metals have been described, none of them to stable to air and water. Recently we prepared a series of dinuclear xylyl bridged complexes of molybdenum [5-6], which possess physical and chemical properties that are quite different from those of the first benzyl type complexes of molybdenum [ $\eta^5$ - $Cp(CO)_3)MoCH_2C_6H_5]^3$  which was prepared by King in 1967. However, some of these xylyl bridged complexes of molybdenum are not soluble in common organic solvents. For example,  $\alpha, \alpha' - \mu - p - xy|y| - bis$ (cyclopentadienyltricarbonylmolybdenum) [6] does not dissolve in ether and THF, and almost not in acetone and dichloro-methane. On the other hand, the corresponding complex  $\alpha, \alpha' - \mu - p$ -xylyl-bis(pentamethylcyclopentadienyltricarbonylmolybdenum) is not only stable to air and water, also quite soluble in organic solvents such as chloroform and acetone etc. We believe that complexes 1-6 are suitable starting

materials for photochemical reactions to see if a double  $\sigma$ - to  $\pi$ -benzyl rearrangement is possible [3,7]. Now we wish to report xylyl bridged complexes of molybdenum and tungsten.

# **EXPERIMENTAL**

# Physical measurements

Infrared spectra were recorded on Jasco FT/IR 300 E spectrometer. <sup>1</sup>H NMR spectra were registered on an AC 400 Bruker NMR spectrometer. Mass spectra were measured on a Finnigan 1015 D GC-MS spectrometer. Elemental analyses were done at the Analysis Center of National Cheng Kung University.

# Materials and preparations

Mo(CO)<sub>6</sub>(Aldrich). W(CO)<sub>6</sub> (Aldrich),  $\eta^5$ -Cp\*Na (Aldrich),  $\alpha, \alpha'$ -dichloro-*p*-xylene (Aldrich),  $\alpha, \alpha'$ -dichloro-m-xylene (Aldrich) and  $\alpha, \alpha'$ -dichloro-o-xylene

<sup>\*</sup> Author to whom correspondence should be addressed.

(Aldrich) and organic solvents were routinely purified by standard procedures [8].

#### $\alpha, \alpha' - \mu$ -p-xylyl-bis(pentamethylcyclopentadienyltricarbonylmolybdenum) (1)

A three-necked 100 cm<sup>3</sup> round bottom flask was equipped with a dry ice bath, a reflux condenser topped with a nitrogen inlet, an addition funnel, a magnetic stirrer and a one-inch teflon-coated stirring bar. Into this flask was placed 0.88 g (0.0033 mol) of Mo(CO)<sub>6</sub>, 6.7 mL of Cp\*Na (0.5 M in THF) and 40 cm<sup>3</sup> of dry THF. The mixture was heated to reflux for 14 h. The resulting orange solution was cooled to room temperature. With stirring 0.31 g (0.00177 mol) of  $\alpha, \alpha'$ -dichloro-*p*-xylene was added. The mixture was stirred for 1 h. After removal of the solvent the residue was washed with distilled water  $(3 \times 10 \text{ cm}^3)$  and benzene  $(3 \times 10 \text{ mL})$ . The resulting product was dried in vacuo overnight to afford complex 1 as a yellow solid (0.98 g, 81%). m.p. 131-135°C (dec.). Found: c, 55.39; H, 5.30. Calc. for C<sub>34</sub>H<sub>38</sub>Mo<sub>2</sub>O<sub>6</sub>: C, 55.58; H, 5.18. (Mass (m/z): 736 (M+2), 734 (M), 678 (M-2CO), 622 (M-4CO), 594 (M-5CO), 566 (M--6CO).

# $\alpha, \alpha' - \mu$ -m-xylyl-bis(pentamethylcyclopentadienyltricarbonylmolybdenum) (2)

The procedure described above was followed by using 0.88 g (0.0033 mol) of Mo(CO)<sub>6</sub>, 6.7 cm<sup>3</sup> (0.5 M in THF) of Cp\*Na, 0.31 g (0.00167 mol) of  $\alpha,\alpha'$ dichloro-*m*-xylene and 30 cm<sup>3</sup> of dry THF. The complex **2** was isolated as a yellow solid (0.87 g, 72%). m.p. 119–123°C (dec.). Found: 55.43; H, 5.26. Calc. for C<sub>34</sub>H<sub>38</sub>Mo<sub>2</sub>O<sub>6</sub>: 55.58; H, 5.18 Mass (*m*/*z*): 736 (M+2), 734 (M), 706 (M—CO), 678 (M—2CO), 622 (M—4CO), 566 (M—6CO).

## $\alpha, \alpha', \mu$ -o-xylyl-bis(pentamethylcyclopentadienyltricarbonylmolybdenum) (3)

The procedure described above was followed by using 0.88 g (0.0033 mol) of Mo(CO)<sub>6</sub>, 6.7 mL (0.5 M in THF) of Cp\*Na, 0.31 g (0.00167 mol) of  $\alpha$ , $\alpha'$ dichloro-*o*-xylene and 30 cm<sup>3</sup> of dry THF. The complex 3 was isolated as a yellow solid (0.55 g, 46%). m.p. 102–105°C (dec.) found : C, 55.39 ; H, 5.28. Calc. for C<sub>34</sub>H<sub>38</sub>Mo<sub>2</sub>O<sub>6</sub> : C, 55.58 ; H, 5.18. Mass (*m*/*z*) : 736 (M+2), 734 (M), 678 (M—2CO), 622 (M—4CO), 566 (M—6CO).

#### $\alpha, \alpha' - \mu$ -p-xylyl-bis(pentamethylcyclopentadienyltricarbonyltungsten) (4)

The procedure described above was followed by suing 1.17 g (0.0033 mol) of W(CO)<sub>6</sub>, 6.7 mL (0.5 M in THF) of Cp\*Na, 0.31 g (0.00167 mol) of  $\alpha,\alpha'$ -

dichloro-*p*-xylene and 30 cm<sup>3</sup> of dry THF. The complex 4 was isolated as a yellow solid (1.17 g, 78%). m.p. 164–169°C (dec.). Found: C, 44.76; H, 4.27. Calc. for  $C_{34}H_{38}W_2O_6$ : 44.83; H, 4.16 Mass (*m*/*z*): 912 (M+2), 910 (M), 882 (M—CO), 826 (M—3CO), (M—4CO).

 $\alpha, \alpha' - \mu$ -m-xylyl-bis(pentamethylcyclopentadienyltricarbonyltungsten) (5)

The procedure described above was followed by using 1.17 g (0.0033 mol) of W(CO)<sub>6</sub>, 6.7 mL (0.5 M in THF) of Cp\*Na, 0.31 g (0.00167 mol) of  $\alpha,\alpha'$ dichloro-*m*-xylene and 30 cm<sup>3</sup> of dry THF. The complex **5** was isolated as a yellow solid (1.06 g, 71%). m.p. 138–142°C (dec.). Found: C, 44.81; H, 4.29. Calc. for C<sub>34</sub>H<sub>38</sub>W<sub>2</sub>O<sub>6</sub>: C, 44.83; H, 4.16. Mass (*m*/*z*): 912 (M+2), 910 (M), 882 (M—CO), 854 (M—2CO), 826 (M—3CO), 798 (M—4CO), 742 (M—6CO).

## $\alpha, \alpha' - \mu - 0 - xylyl$ -bis(pentamethylcyclopentadienyltricarbonyltungsten) (6)

The procedure described above was followed by using 1.17 g (0.0033 mol) of W(CO)<sub>6</sub>, 6.7 cm<sup>3</sup> (0.5 M in THF) of Cp\*Na, 0.31 g (0.00167 mol) of  $\alpha, \alpha'$ -dichloro-o-xylene and 30 mL of dry THF. The complex **6** was isolated as a yellow solid (0.87 g, 58%). m.p. 121–124°C (dec.). Found: C, 44.84; H, 4.34. Calc. for C<sub>34</sub>H<sub>38</sub>W<sub>2</sub>O<sub>6</sub>: 44.83; H, 4.16. Mass (*m*/*z*): 911 (M+1), 910 (M), 854 (M—4CO), 742 (M—6CO).

#### X-ray single-crystal structural determination

Yellow crystals of complex 1 and 5 were prepared by diffusion of hexane into a concentrated CH<sub>2</sub>Cl<sub>2</sub> solutions of 1 and 5 under nitrogen at 4°C. The single crystal X-ray diffraction measurements were performed on a Nonious CAD-4 automated diffractometer using graphite monochromated Mo-Ka radiation. 25 High-angle reflections (14.53  $< 2\theta <$ 30.91°) (for complex 1) and  $(16.92 < 2\theta < 36.02^{\circ})$ (for complex 5) were used, respectively, in a leastsquares fit to obtain accurate cell constants. The monoclinic space group  $P2_1/n$  and orthorombic space group P bca were assigned on the basis of the systematic absences. Diffraction intensities were collected up to  $2\theta < 49.8^{\circ}$  (for complex 1) and  $2\theta < 44.8^{\circ}$  (for complex 5) using  $\theta/2\theta$  scan technique. The reflections with  $I_0 > 2.0\sigma$  ( $I_0$ ) were judged as observations and used for solution and structure refinement. Data were corrected for Lorentz-polarization factors. An empirical absorption correction based on a series of  $\psi$  scan was applied to the data. The structure was solved by direct methods [9], and refined by a full-matrix leastsquares routine [10] with anisotropic thermal parameters for all non-hydrogen atoms. All of the atoms were placed isotropically at their calculated positions and fixed in the calculations. For a summary of crystal data and refinement details, see Table 1. Selected bond distances and angles are listed in Tables 2–4.

## **RESULTS AND DISCUSSION**

The reactions of  $\eta^5$ -Cp\*M(CO)<sub>3</sub>Na (M = Mo, W) with  $\alpha, \alpha'$ -p-, $\alpha, \alpha'$ -m- and  $\alpha, \alpha'$ -o dichloroxylenes in 2:1 molar proportions lead to formation of *anti*-type xylyl bridged dinuclear complexes of molybdenum (1–3) and tungsten (4–5) in high yields. All of these complexes are soluble in CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub>, and stable to air and water, even stable in dilute bases (~10<sup>-2</sup> M in ethanol). The precursors 1' and 2' were prepared from the reactions  $\eta^5$ -Cp\*Na with Mo(CO)<sub>6</sub> and W(CO)<sub>6</sub>, respectively: is about 2.3 ppm (i.e. from ~4.5 to ~2.2 ppm) [5–7]. We have also tried hard to take variable temperature <sup>1</sup>H NMR for complexes 1–6, unfortunately, we failed to observe fluxional behavior for them. The <sup>1</sup>H NMR data for 1–6, see Table 5.

The crystal structure of complex 1 and complex 5 consist of discrete molecules of p-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub> Mo(CO)<sub>3</sub>Cp<sup>\*</sup>]<sub>2</sub> and m-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub>W(CO)<sub>3</sub>Cp<sup>\*</sup>]<sub>2</sub>. Figure 1 is the ORTEP plot of p-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub> Mo(CO)<sub>3</sub>Cp<sup>\*</sup>]<sub>2</sub>. The main molecular plane can be considered as that of p-C<sub>6</sub>H<sub>4</sub>(CH<sub>2</sub>) with two Cp\*Mo(CO)<sub>3</sub> at the anti-position. The Mo—C(O) lengths average 1.976(4) Å is very close to the average corresponding lengths in the complex [{Mo(CO)<sub>3</sub>}<sub>2</sub> ( $\eta^6, \eta^{-6}C_{14}H_{14}$ ][11] of 1.962(5) Å. The mean Mo—C distance for the Cp\* ligand of 2.349(3) Å is quite close to the corresponding length in the Cp<sup>\*</sup>Mo<sub>2</sub>



Complexes (1-6) are not soluble in non-polar organic solvents such as hexane and benzene. However, they are quite soluble in CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, ethyl acetate and actone. In general, the solubility of complexes (1-6) varies in following order:

# o > m > p

#### W > Mo

A characteristic feature of all these complexes is the presence of two intense v(CO) bands in the region 2010–1908 cm<sup>-1</sup>[5–7] (see Table 6). In addition, <sup>1</sup>H-NMR spectra also reveal characteristic upfield shifts for the methylene protons upon complexation to the moiety Cp\*M(CO)<sub>3</sub> coordination chemical shift

 $(\mu$ -S<sub>2</sub>) $(\mu$ -S)<sub>2</sub> of 2.344(2) Å [12]. The mean Mo—C(H<sub>2</sub>) distance in 1 of 2.366(3) Å is very close to that in the complex [Cp'Mo(CO)<sub>3</sub>]<sub>2</sub> $(\mu$ -o-CH<sub>2</sub> C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>) of 2.383(4) Å [5]. Figure 2 is the ORTEP plot of m-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub>W(CO)<sub>3</sub>Cp\*]<sub>2</sub>, the plane made up of m-C<sub>6</sub>H<sub>4</sub>(CH<sub>2</sub>)<sub>2</sub> also with two Cp\*W(CO)<sub>3</sub> at the anti-positions. The W—C(O) lengths average 1.955(13) Å is a little longer than the average corresponding length in [FvW<sub>2</sub>(CO)<sub>6</sub>]<sup>-2</sup> (Fv = Fulvalene) of 1.929(5) Å [10]. The mean W—C distance for the Cp\* ligand of 2.342(11) Å is very close to the average corresponding distances in p-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub>W (CO)<sub>3</sub>Cp\*]<sub>2</sub> of 2.348(8) Å. The mean W—C(H<sub>2</sub>) distance for 5, 2.3605(11) Å, is almost identical with the average corresponding distance in p-C<sub>6</sub>H<sub>4</sub>[CH<sub>2</sub>W







Fig. 2. Molecular Structure of complex 5.

|                                         | 1                              | 5                              |
|-----------------------------------------|--------------------------------|--------------------------------|
| Empirical formula                       | $C_{34}H_{38}Mo_2O_6$          | $C_{34}H_{38}W_{2}O_{6}$       |
| Molar mass (g)                          | 734                            | 910                            |
| Crystal system                          | monoclinic                     | orthorhombic                   |
| Space group                             | $P2_1/n$                       | P bca                          |
| Crystal size (mm <sup>3</sup> )         | $0.56 \times 0.25 \times 0.25$ | $0.50 \times 0.50 \times 0.31$ |
| a (Å)                                   | 8.8179(22)                     | 15.869(3)                      |
| <i>b</i> (Å)                            | 12.8968(16)                    | 14.2852(8)                     |
| c (Å)                                   | 15.3531(13)                    | 29.0731(20)                    |
| β (*)                                   | 103.346(14)                    |                                |
| $V(\dot{A}^3)$                          | 1698.8(5)                      | 6590.5(12)                     |
| Ζ                                       | 4                              | 8                              |
| Τ (Κ)                                   | 298                            | 298                            |
| $D_{\text{calc}}$ (g cm <sup>-3</sup> ) | 1.436                          | 1.835                          |
| $\hat{\lambda}$ (Å)                     | 0.70930                        | 0.70930                        |
| $\mu ({\rm mm^{-1}})$                   | 7.587                          | 71.666                         |
| F (000)                                 | 748                            | 3503                           |
| Scan type                               | heta/2	heta                    | $\theta/2\theta$               |
| $2\theta \max(\hat{\cdot})$             | 50.0                           | 45.0                           |
| h, k, l range                           | (-10; 10) (0; 15) (0; 18)      | (0; 17) (0; 15) (0; 31)        |
| No. of unique reflections               | 2992                           | 4281                           |
| No. of data with $I > 2\sigma(I)$       | 2463                           | 3251                           |
| $R_{F}^{\ \prime\prime}$                | 0.031                          | 0.036                          |
| $R_W^a$                                 | 0.037                          | 0.043                          |
| GOF                                     | 1.54                           | 1.86                           |

Table 1. Crystallographic data and refinement details for complexes 1 and 5

<sup>*a*</sup> 
$$R_F = \Sigma (F_o - F_c) / \Sigma (F_o); R_W = [\Sigma \theta (F_o - F_c)^2 / \Sigma (\omega F_o^2)]^{1/2}$$

|             | 1        | 5             |           |
|-------------|----------|---------------|-----------|
| MoC(1)      | 2.322(3) | W(1)—C(1)     | 2.389(11) |
| Mo-C(2)     | 2.322(3) | W(1) - C(2)   | 2.346(11) |
| Mo-C(3)     | 2.354(3) | W(1) - C(3)   | 2.307(11) |
| Mo-C(4)     | 2.391(3) | W(1) - C(4)   | 2.308(10) |
| Mo-C(5)     | 2.359(4) | W(1) - C(5)   | 2.323(10) |
| MoC(6)      | 2.366(3) | W(1) - C(6)   | 2.355(11) |
| Mo-C(16)    | 1.980(4) | W(1)—C(16)    | 1.972(12) |
| Mo-C(17)    | 1.969(4) | W(1) - C(7)   | 1.959(14) |
| Mo-C(18)    | 1.979(4) | W(1) - C(18)  | 1.935(14) |
| C(1) - C(2) | 1.410(6) | W(2) - C(21)  | 2.392(12) |
| C(1)—C(5)   | 1.416(6) | W(2) - C(22)  | 2.340(12) |
| C(2)—C(3)   | 1.424(5) | W(2)C(23)     | 2.321(11) |
| C(3)—C(4)   | 1.407(6) | W(2)-C(24)    | 2.299(12) |
| C(5)C(6)    | 1.403(6) | W(2)—C(25)    | 2.338(12) |
| C(6)—C(7)   | 1.480(5) | W(2)—C(26)    | 2.366(11) |
|             |          | C(1) - C(2)   | 1.376(17) |
|             |          | C(1) - C(5)   | 1.414(17) |
|             |          | C(2) - C(3)   | 1.385(20) |
|             |          | C(3)C(4)      | 1.439(18) |
|             |          | C(4)C(5)      | 1.404(17) |
|             |          | C(21)—C(22)   | 1.363(18) |
|             |          | C(21)—C(25)   | 1.428(19) |
|             |          | C(22)—C(23)   | 1.447(19) |
|             |          | C(23)—C(24)   | 1.410(21) |
|             |          | C(24) - C(25) | 1.472(19) |

| Table 2. Bond distances | (Å) | ) for complexes 1 | and <b>5</b> |
|-------------------------|-----|-------------------|--------------|
|-------------------------|-----|-------------------|--------------|

Table 3. Selected bond angles (°) for complex 1 and complex 5

| 1                 |            | 5                    |           |
|-------------------|------------|----------------------|-----------|
| C(1)-Mo-C(16)     | 105.72(15) | C(1) - W(1) - C(16)  | 106.4(4)  |
| C(1) - Mo - C(17) | 89.57(14)  | C(1) - W(1) - C(17)  | 143.3(4)  |
| C(1)MoC(18)       | 139.18(15) | C(1) - W(1) - C(18)  | 128.5(5)  |
| C(2)—Mo—C(16)     | 139.99(15) | C(2)-W(1)-C(16)      | 91.4(4)   |
| C(2)—Mo—C(17)     | 89.40(14)  | C(2) - W(1) - C(17)  | 112.8(5)  |
| C(2)—Mo—C(18)     | 105.14(15) | C(2) - W(1) - C(18)  | 155.9(4)  |
| C(3)-Mo-C(16)     | 151.30(17) | C(3) - W(1) - C(16)  | 110.1(4)  |
| C(3)—Mo—C(17)     | 121.17(16) | C(3) - W(1) - C(17)  | 86.1(4)   |
| C(3)—Mo—C(18)     | 95.73(15)  | C(3) - W(1) - C(18)  | 130.5(5)  |
| C(4)—Mo—C(16)     | 117.42(17) | C(4) - W(1) - C(16)  | 146.3(4)  |
| C(4)—Mo—C(17)     | 145.63(13) | C(4) - W(1) - C(17)  | 94.7(4)   |
| C(1)MoC(18)       | 119.18(16) | C(4) - W(1) - C(18)  | 99.1(4)   |
| C(5)—Mo—C(16)     | 94.94(16)  | C(5) - W(1) - C(16)  | 141.1(4)  |
| C(5)—Mo—C(17)     | 120.94(15) | C(5) - W(1) - C(17)  | 129.2(4)  |
| C(5)—Mo—C(18)     | 152.61(16) | C(5) - W(1) - C(18)  | 98.9(4)   |
| C(6)—Mo—C(16)     | 75.65(15)  | C(21) - W(2) - C(36) | 144.0(5)  |
| C(6)—Mo—C(17)     | 133.35(14) | C(21) - W(2) - C(37) | 121.2(5)  |
| C(6)—Mo—C(18)     | 75.03(19)  | C(21) - W(2) - C(38) | 114.5(6)  |
| C(16)-Mo-C(17)    | 79.11(19)  | C(22) - W(2) - C(36) | 117.4(5)  |
| C(16)—Mo—C(18)    | 109.33(17) | C(22) - W(2) - C(37) | 151.9(5)  |
| C(17)—Mo—C(18)    | 77.33(17)  | C(22)-W(2)-C(38)     | 95.2(5)   |
| Mo-C(6)-C(7)      | 124.75(23) | C(23) - W(2) - C(36) | 86.2(5)   |
| MoC(16)-O(16)     | 176.6(4)   | C(23) - W(2) - C(37) | 132.8(5)  |
| Mo-C(17)-O(17)    | 178.3(4)   | C(23) - W(2) - C(38) | 108.7(5)  |
| Mo-C(18)-O(18)    | 176.2(4)   | C(24) - W(2) - C(36) | 89.7(5)   |
|                   |            | C(24) - W(2) - C(37) | 99.7(5)   |
|                   |            | C(24) - W(2) - C(38) | 143.8(6)  |
|                   |            | C(25) - W(2) - C(36) | 124.0(5)  |
|                   |            | C(25)-W(2)-C(37)     | 93.2(5)   |
|                   |            | C(25)-W(2)-C(38)     | 149.6(6)  |
|                   |            | W(1) - C(6) - C(41)  | 123.0(8)  |
|                   |            | W(1) - C(16) - O(16) | 176.7(9)  |
|                   |            | W(1) - C(17) - O(17) | 177.3(10) |
|                   |            | W(1)-C(18)-O(18)     | 174.4(10) |
|                   |            | W(2)—C(26)—O(43)     | 122.0(7)  |
|                   |            | W(2)—C(36)—O(36)     | 176.4(13) |
|                   |            | W(2)—C(37)—O(37)     | 173.6(11) |
|                   |            | W(2)-C(38)-O(38)     | 173.6(13) |

Table 4. Selected Bond distances (Å) for  $\mu$ -p-xylyl-[ $\eta^{5}$ -Cp\*W(CO)<sub>3</sub>]<sub>2</sub>

| W(1)C(1)(Cp*)        | 2.372(8)  |
|----------------------|-----------|
| $W(1) - C(2)(Cp^*)$  | 2.330(8)  |
| $W(1) - C(3)(Cp^*)$  | 2.337(8)  |
| $W(1) - C(4)(Cp^*)$  | 2.358(8)  |
| $W(1) - C(5)(Cp^*)$  | 2.385(8)  |
| W(2)-C(21)(Cp*)      | 2.332(8)  |
| W(2)C(22)(Cp*)       | 2.389(8)  |
| W(2)—C(23)(Cp*)      | 2.368(9)  |
| W(2)—C(24)(Cp*)      | 2.317(8)  |
| W(2)—C(25)(Cp*)      | 2.329(8)  |
| $W(1) - C(6)(CH_2)$  | 2.351(8)  |
| $W(2) - C(26)(CH_2)$ | 2.372(8)  |
| W(1)C(16)(O)         | 1.969(10) |
| W(1)—C(17)(O)        | 1.976(9)  |
| W(1)C(18)(O)         | 1.982(9)  |
| W(2)—C(36)(O)        | 1.989(9)  |
| W(2)—C(37)(O)        | 1.962(10) |
| W(2)—C(38)(O)        | 1.996(10) |
|                      |           |

Table 5. <sup>1</sup>H-NMR spectra data compounds 1-6

| Compounds <sup>a</sup> | Phenylene         | Methylene    | Methyl (ppm)  |
|------------------------|-------------------|--------------|---------------|
| 1                      | 7.01 (s, 4H)      | 2.22 (s, 4H) | 1.91 (s, 30H) |
| 2                      | 6.92-6.77 (m, 4H) | 2.21 (s, 4H) | 1.92 (s, 30H) |
| 3                      | 6.90-6.74 (m, 4H) | 2.20 (s, 4H) | 1.91 (s, 30H) |
| 4                      | 6.94 (s, 4H)      | 2.35 (s, 4H) | 2.03 (s, 30H) |
| 5                      | 7.09-6.74 (m, 4H) | 2.18 (s, 4H) | 2.10 (s, 30H) |
| 6                      | 7.07-6.73 (m 4H)  | 2.25 (s, 4H) | 2.12 (s, 30H) |

" Measured in CDCl<sub>3</sub> solutions.

Table 6. Infrared spectra data for compounds 1-6

| Compounds <sup>a</sup> | $v(C=O) (cm^{-1})$  |  |
|------------------------|---------------------|--|
| 1                      | 2002 (s), 1919 (vs) |  |
| 2                      | 2003 (s), 1921 (vs) |  |
| 3                      | 2005 (s), 1923 (vs) |  |
| 4                      | 1992 (s), 1911 (vs) |  |
| 5                      | 1996 (s), 1912 (vs) |  |
| 6                      | 1998 (s), 1914 (vs) |  |
|                        |                     |  |

"Measured in CH<sub>2</sub>Cl<sub>2</sub> solutions.

 $(CO)_{3}Cp^{*}$ ] of 2.3615(8) Å (see Table 4). Furthermore, all structural parameters are very reasonable if compared to the literature values [11–13].

In summary, we have prepared and characterized the  $\alpha, \alpha'$ -p-, m- and o-xylyl bridged dinuclear new complexes of molybdenum and tungsten 1-6. We also identified the molecular structures of complexes 1 and 5 to be anti conformers in solid states.

Acknowledgements—We thank the National Science Council of the Republic of China for financial support of this research.

#### REFERENCES

1. Green, M. L. H. and Nagy, P. L. I., Adv. Organomet. Chem., 1964, 2, 325.

- 2. Abel, E. W. and Moorhouse, S., J. Chem. Soc., Dalton, 1973, 1706.
- 3. King, R. B. and Fronzaglia, A., J. Am. Chem. Soc., 1966, 88, 709.
- 4. Roberts, J. S. and Klabunde, K. J., J. Am. Chem. Soc., 1976, 98, 2509.
- Lin, S., Liu, L. K., Wang, N. T. and Wu, H. Y., J. Organomet. Chem., 1996, 516, 207.
- 6. Lin, S., Nguyen, S. T., Grubbs, R. H. and Ziller, J. W., unpublished work.
- Barbeau, C. and Turcotte, J., Can. J. Chem., 1976, 54, 1612.
- Perin, D. D., Armarego, W. L. and Perrin, D. R., *Purification of Laboratory Chemicals*, Pergamon, New York (1980).
- Main, P., Sheldrick, G. M., Krueger, G. M. and Goodard, R., Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, p. 206. Clarendon, Oxford (1985).
- Gabe, E. J., Lee, F. L., Lepage, Y., Krueger, G. M. and Goddard, R., Crystallographic Computing 3: Data Collection, Structure Determination, Protein and Databases, p. 167 Clarendon, Oxford (1985).
- Adamas, H., Baily, N. A., Willett, D. G. and Winter, M. J., J. Organomet. Chem., 1987, 333, 61.
- Brunner, H., Meier, W. and Wachter, J., Organometallics, 1982, 1, 1107.
- Tilset, M., Vollhardt, K. P. C. and Boese, R., Organometallics, 1994, 13, 3146.