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Abstract—The reactions of #°-Cp*M(CO);Na (M = Mo, W) with a,a’-p-, m- and o-dichloro-xylenes yielded
p-, m- and o-xylyl bridged dinuclear complexes of #’>-Cp*M(CO), in high yields. All of such new complexes
are stable to air and water, even stable in dilute acids and bases. © 1997 Elsevier Science Ltd
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A considerable number of ¢- and =-allyl derivatives
[1-2] as well as 6- and m-benzyl derivatives [3-4] of
transition metals have been described, none of them
to stable to air and water. Recently we prepared a
series of dinuclear xylyl bridged complexes of mol-
ybdenum [5-6], which possess physical and chemical
properties that are quite different from those of the
first benzyl type complexes of molybdenum [5°-
Cp(CO);)MoCH,CH;]* which was prepared by King
in 1967. However, some of these xylyl bridged com-
plexes of molybdenum are not soluble in common
organic solvents. For example, o0 -u-p-xylyl-bis
(cyclopentadienyltricarbonylmolybdenum) [6] does not
dissolve in ether and THF, and almost not in acetone
and dichloro-methane. On the other hand, the cor-
responding complex o,o’-u-p-xylyl-bis(pentamethyl-
cyclopentadienyltricarbonylmolybdenum) is not only
stable to air and water, also quite soluble in organic
solvents such as chloroform and acetone etc. We
believe that complexes 1-6 are suitable starting
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materials for photochemical reactions to see if a
double o- to n-benzyl rearrangement is possible [3,7].
Now we wish to report xylyl bridged complexes of
molybdenum and tungsten.

EXPERIMENTAL
Physical measurements

Infrared spectra were recorded on Jasco FT/IR 300
E spectrometer. '"H NMR spectra were registered on
an AC 400 Bruker NMR spectrometer. Mass spectra
were measured on a Finnigan 1015 D GC-MS spec-
trometer. Elemental analyses were done at the Analy-
sis Center of National Cheng Kung University.

Materials and preparations

Mo(CO)4(Aldrich). W(CO), (Aldrich), #*-Cp*Na
(Aldrich), a,a’-dichloro-p-xylene (Aldrich), «,a’-dich-
loro-m-xylene (Aldrich) and o,0’-dichloro-o-xylene
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(Aldrich) and organic solvents were routinely purified
by standard procedures [8].

o0 -u-p-xylyl-bis(pentamethylcyclopentadienyltri-
carbonylmolybdenum) (1)

A three-necked 100 ¢cm® round bottom flask was
equipped with a dry ice bath, a reflux condenser
topped with a nitrogen inlet, an addition funnel, a
magnetic stirrer and a one-inch teflon-coated stirring
bar. Into this flask was placed 0.88 g (0.0033 mol) of
Mo(CO)q, 6.7 mL of Cp*Na (0.5 M in THF) and 40
cm’ of dry THF. The mixture was heated to reflux for
14 h. The resulting orange solution was cooled to
room temperature. With stirring 0.31 g (0.00177 mol)
of «,o’~dichloro-p-xylene was added. The mixture was
stirred for 1 h. After removal of the solvent the residue
was washed with distilled water (3 x 10 cm®) and ben-
zene (3 x 10 mL). The resulting product was dried in
vacuo overnight to afford complex 1 as a yellow solid
(0.98 g, 81%). m.p. 131-135°C (dec.). Found: c,
55.39; H, 5.30. Calc. for C;;H;3Mo0,0: C, 55.58; H,
5.18. (Mass (m/z): 736 (M+2), 734 (M), 678
M—2C0), 622 (M—4CO), 594 (M—5CO), 566
(M—6CO).

oo -p-m-xylyl-bis(pentamethylcyclopentadienyltri-
carbonylmolybdenum) (2)

The procedure described above was followed by
using 0.88 g (0.0033 mol) of Mo(CO)s, 6.7 cm® (0.5
M in THF) of Cp*Na, 0.31 g (0.00167 mol) of o,a’-
dichloro-m-xylene and 30 cm® of dry THF. The com-
plex 2 was isolated as a yellow solid (0.87 g, 72%).
m.p. 119-123°C (dec.). Found: 55.43; H, 5.26. Calc.
for CyH3;xMo0,04: 55.58; H, 5.18 Mass (m/z): 736
M+2), 734 (M), 706 (M—CO), 678 (M—2CO), 622
M—4CO0), 566 M—6CO).

o, - u-0-xylyl-bis(pentamethylcyclopentadienyltri-
carbonylmolybdenum) (3)

The procedure described above was followed by
using 0.88 g (0.0033 mol) of Mo(CO)¢, 6.7 mL (0.5M
in THF) of Cp*Na, 0.31 g (0.00167 mol) of a,o'-
dichloro-o-xylene and 30 cm® of dry THF. The com-
plex 3 was isolated as a yellow solid (0.55 g, 46%).
m.p. 102-105°C (dec.) found : C, 55.39; H, 5.28. Calc.
for C;,H;3Mo0,04: C, 55.58; H, 5.18. Mass (m/z): 736
M+2), 734 (M), 678 M—2CO), 622 (M—4CQO),
566 (M—6CO).

o0’ -pu-p-xylyl-bis(pentamethylcyclopentadienyltri-
carbonyltungsten) (4)

The procedure described above was followed by
suing 1.17 g (0.0033 mol) of W(CO),, 6.7 mL (0.5 M
in THF) of Cp*Na, 0.31 g (0.00167 mol) of o,o’-
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dichloro-p-xylene and 30 cm’ of dry THF. The com-
plex 4 was isolated as a yellow solid (1.17 g, 78%).
m.p. 164-169°C (dec.). Found: C, 44.76; H, 4.27.
Cale. for C,,H3 W,0,: 44.83; H, 4.16 Mass (m/z):
912 (M +2),910 (M), 882 (M—CO), 826 M—3CO),
(M—4CO).

o,o’-u-m-xylyl-bis(pentamethylcyclopentadienyltri-
carbonyltungsten) (5)

The procedure described above was followed by
using 1.17 g (0.0033 mol) of W(CO),, 6.7 mL (0.5 M
in THF) of Cp*Na, 0.31 g (0.00167 mol) of a,«’-
dichloro-m-xylene and 30 cm? of dry THF. The com-
plex 5 was isolated as a yellow solid (1.06 g, 71%).
m.p. 138-142°C (dec.). Found: C, 44.81; H, 4.29.
Calc. for C;3,H34W,0,: C, 44.83; H, 4.16. Mass (m/z) :
912 (M+2), 910 (M), 882 (M—COQ), 854 (M—2CO),
826 (M—3CO), 798 (M—4CO), 742 (M—6CO).

o0 -p-0-xylyl-bis(pentamethyicyclopentadienyltri-
carbonyltungsten) (6)

The procedure described above was followed by
using 1.17 g (0.0033 mol) of W(CO),, 6.7 cm® (0.5 M
in THF) of Cp*Na, 0.31 g (0.00167 mol) of ax’-
dichloro-o-xylene and 30 mL of dry THF. The com-
plex 6 was isolated as a yellow solid (0.87 g, 58%).
m.p. 121-124°C (dec.). Found: C, 44.84; H, 4.34.
Calc. for C,;H3sW,0,: 44.83; H, 4.16. Mass (m/z):
911 M+1), 910 (M), 854 (M—4CO), 742
M—6CO).

X-ray single-crystal structural determination

Yellow crystals of complex 1 and 5 were prepared
by diffusion of hexane into a concentrated CH,Cl,
solutions of 1 and 5 under nitrogen at 4°C. The single
crystal X-ray diffraction measurements were per-
formed on a Nonious CAD-4 automated diffract-
ometer using graphite monochromated Mo-Ka
radiation. 25 High-angle reflections (14.53 < 20 <
30.91°) (for complex 1) and (16.92 < 26 < 36.02°)
(for complex 5) were used, respectively, in a least-
squares fit to obtain accurate cell constants. The mono-
clinic space group P2,/n and orthorombic space
group P bca were assigned on the basis of the sys-
tematic absences. Diffraction intensities were collected
up to 26 < 49.8° (for complex 1) and 26 < 44.8° (for
complex 5) using 6/26 scan technique. The reflections
with I, > 2.06 (I,) were judged as observations and
used for solution and structure refinement. Data were
corrected for Lorentz-polarization factors. An empiri-
cal absorption correction based on a series of i scan
was applied to the data. The structure was solved by
direct methods [9], and refined by a full-matrix least-
squares routine [10] with anisotropic thermal par-
ameters for all non-hydrogen atoms. All of the atoms
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were placed isotropically at their calculated positions
and fixed in the calculations. For a summary of crystal
data and refinement details, see Table 1. Selected bond
distances and angles are listed in Tables 2-4.

RESULTS AND DISCUSSION

The reactions of #*-Cp*M(CO);Na (M = Mo, W)
with a,o’-p-,a,a’-m- and o,a’-0 dichloroxylenes in 2: 1
molar proportions lead to formation of anti-type xylyl
bridged dinuclear complexes of molybdenum (1-3)
and tungsten (4-5) in high yields. All of these com-
plexes are soluble in CH,Cl, and CHCl,;, and stable to
air and water, even stable in dilute bases (~10"2 M
in ethanol). The precursors 1" and 2° were prepared
from the reactions #°-Cp*Na with Mo(CO); and
W(CO),, respectively :

. +M(CO),

Me

M- Na*
(C0)Y’

M=Mo (1")
M=W (2")

Complexes (1-6) are not soluble in non-polar
organic solvents such as hexane and benzene.
However, they are quite soluble in CH,Cl,, CHCI,,
ethyl acetate and actone. In general, the solubility of
complexes (1-6) varies in following order :

o>m>p
W > Mo

A characteristic feature of all these complexes is the
presence of two intense v(CO) bands in the region
2010-1908 c¢cm™'[5-7] (see Table 6). In addition,
'"H-NMR spectra also reveal characteristic upfield
shifts for the methylene protons upon complexation
to the moiety Cp*M (CO); coordination chemical shift
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is about 2.3 ppm (i.e. from ~4.5to ~2.2 ppm) [5-7].
We have also tried hard to take variable temperature
"H NMR for complexes 1-6, unfortunately, we failed
to observe fluxional behavior for them. The '"H NMR
data for 1-6, see Table 5.

The crystal structure of complex 1 and complex §
consist of discrete molecules of p-C¢H,[CH,
Mo(CO);Cp*];, and m-C,H,JCH,W(CO),Cp*]..
Figure 1 is the ORTEP plot of p-C,H,[CH,
Mo(CO),;Cp*],. The main molecular plane can be con-
sidered as that of p-CH,(CH,) with two
Cp*Mo(CO), at the anti-position. The Mo—C(O)
lengths average 1.976(4) A is very close to the average
corresponding lengths in the complex [{Mo(CO);},
%y °C HJ[11] of 1962(5 A. The mean
Mo—C distance for the Cp* ligand of 2.349(3) A is
quite close to the corresponding length in the CpfMo,

Me
Me Me
Refluxing
THE Me Me
M~ Na*
(coy?
M=Mo (1")
M=W (2"
Me
Me Me
Me Me
(Coy’ CH,— M
M CH, (Co)?
Me Me
Me Me
Me
M=Mo M=Mo
1 u-p-xylyl 4
2 w-m-xylyl s
3 pn-o-xylyl 6
(u-S;)(u-S), of 2.344(2) A [12]. The mean

Mo—C(H,) distance in 1 of 2.366(3) A is very close
to that in the complex [Cp'Mo(CO)s],(1-0-CH,
C.H,CH,) of 2.383(4) A [5]. Figure 2 is the ORTEP
plot of m-C;H,[CH,W(CO),Cp*],, the plane made up
of m-C¢H,(CH,), also with two Cp*W(CO), at the
anti-positions. The W—C(O) lengths average
1.955(13) A is a little longer than the average cor-
responding length in [FvW,(CO)s~? (Fv = Ful-
valene) of 1.929(5) A [10]. The mean W—C distance
for the Cp* ligand of 2.342(11) A is very close to the
average corresponding distances in p-C{H,[JCH,W
(C0),Cp*]; of 2.348(8) A. The mean W—C(H,) dis-
tance for §, 2.3605(11) A, is almost identical with the
average corresponding distance in p-C,H,[CH,W
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C(14)

C(6)

Fig. 1. Molecular Structure of Complex 1.

Cc@4y C5)

Fig. 2. Molecular Structure of complex 5.
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Table 1. Crystallographic data and refinement details for complexes 1 and §

1 5

Empirical formula C;4H2:sMo0,0q C3H3,W,04
Molar mass (g) 734 910
Crystal system monoclinic orthorhombic
Space group P2,/n P bca
Crystal size (mm?) 0.56x0.25%0.25 0.50 % 0.50 x 0.31
a (A) 8.8179(22) 15.869(3)
b (A) 12.8968(16) 14.2852(8)
c(A) 15.3531(13) 29.0731(20)
B 103.346(14)
vV (AY) 1698.8(5) 6590.5(12)
V4 4 8
T(K) 298 298
Dy (gem™) 1.436 1.835
i (A) 0.70930 0.70930
u(mm~") 7.587 71.666
F (000) 748 3503
Scan type 0/20 0/26
20 max () 50.0 45.0
h, k, | range (—10;10) (0; 15) (0; 18) (0;17) (05 15) (0;31)
No. of unique reflections 2992 4281
No. of data with I > 2o (I) 2463 3251
R 0.031 0.036
Ry 0.037 0.043

1.54 1.86

GOF

Ry = L(F,— F)/Z(F)); Ry = [Z0(F,— F)*/Z(wF}))"?

Table 2. Bond distances (A) for complexes 1 and §

1 5
Mo—C(l})  2.322(3) W(1)—C()  2.389(11)
Mo—C(2)  2.322(3) W()—C(2)  2.346(11)
Mo—C(3)  2.354(3) W()—C@3)  2.307(11)
Mo—C(4)  2.391(3) W(1)—C(4)  2.308(10)
Mo—C(5)  2.359(4) W(1)—C(5)  2.323(10)
Mo—C(6)  2.366(3) W(1)—C@6)  2.355(11)
Mo—C(16)  1.980(4) W(1)—C16)  1.972(12)
Mo—C(17)  1.969(4) W()—C(T)  1.959(14)
Mo—C(18)  1.979(4) W()—C(18)  1.935(14)
C(H—C@2)  1.4106) W(2)—C@21)  2.392(12)
C(H)—C(5)  1.416(6) W(2)—C(22)  2.340(12)
CQ)—C3)  1.424(5) W(2)—C(23)  2.321(11)
C(3)—C@)  1.407(6) W(2)—C(24)  2.299(12)
C(5)—C(6)  1.403(6) W(2)—C(25)  2.338(12)
C(6)—C(7)  1.480(5) W(2)—C(26)  2.366(11)
C(1)—C(2) 1.376(17)
C(1)—C(5) 1.414(17)
C(2)—CQ3) 1.385(20)
C(3)—C(@) 1.439(18)
C(@)—C(5) 1.404(17)
CEN—C(22)  1.363(18)
C(2H—C(25)  1.428(19)
C2)—C(23) 1.447(19)
C(23)—C(24) 1.410Q21)

C(24)—C(25)

1.472(19)
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Table 3. Selected bond angles (°) for complex 1 and complex 5§

1

5

C(1)~-Mo—C(16)
C(1)—Mo—C(17)
C(1)—Mo—C(18)
C(2)—Mo—C(16)
C(2)—Mo—C(17)
C(2)—Mo—C(18)
C(3)—Mo—C(16)
C(3)—Mo—C(17)
C(3)—Mo—C(18)
C(4)—Mo—C(16)
C(4)—Mo—C(17)
C(1)—Mo—C(18)
C(5)—Mo—C(16)
C(5)—Mo—C(17)
C(5)—Mo—C(18)
C(6)—Mo—C(16)
C(6)—Mo—C(17)
C(6)—Mo—C(18)
C(16)—Mo—C(17)
C(16)—Mo—C(18)
C(17)—Mo—C(18)
Mo—C(6)—C(7)
Mo—C(16)—O0(16)
Mo—C(17)—0(17)
Mo—C(18)—0(18)

105.72(15)
89.57(14)
139.18(15)
139.99(15)
89.40(14)
105.14(15)
151.30(17)
121.17(16)
95.73(15)
117.42(17)
145.63(13)
119.18(16)
94.94(16)
120.94(15)
152.61(16)
75.65(15)
133.35(14)
75.03(19)
79.11(19)
109.33(17)
77.33(17)
124.75(23)
176.6(4)
178.3(4)
176.2(4)

C(H—W(1)—C(16)
C()—W(1)—C(17)
C(1)—W(1)—C(18)
CR)—W(1)—C(16)
CQ)—W(1)—C(17)
C)—W(1)—C(18)
CE—W(1)—C(16)
C3)—W(1)—C(17)
CB)—W(1)—C(18)
C@)—W(H—C(16)
C@—W(1)—C(17)
C@)—W(1)—C(18)
C(5)—W(1)—C(16)
CE—W(1)—C(17)
C(5)—W(1)—C(18)
CRDH—W(2)—C(36)
CQRH—W(2)—C(37)
CRH—W(2)—C(38)
C(22)—W(2)—C(36)
C)—W(Q2)—C(37)
C22)—W(2)—C(38)
C(23)—W(2)—C(36)
C23)—W(2)—C(37)
C2H—W(2)—C(38)
C(24)—W(2)—C(36)
C(24)—W(2)—C(37)
C24)—W(2)—C(38)
C25)—W(2)—C(36)
C(25)—W(2)—C(37)
C(25)—W(2)—C(38)
W(1)—C(6)—C(41)
W(1)—C(16)—0(16)
W(1)—C(17)—0(17)
W(1)—C(18)—O(18)
W(2)—C(26)—0(43)
W(2)—C(36)—0(36)
W(2)—C(37)—037)
W(2)—C(38)—0(38)

106.4(4)
143.3(4)
128.5(5)
91.4(4)
112.8(5)
155.9(4)
110.1(4)
86.1(4)
130.5(5)
146.3(4)
94.7(4)
99.1(4)
141.1(4)
129.2(4)
98.9(4)
144.0(5)
121.2(5)
114.5(6)
117.4(5)
151.9(5)
95.2(5)
86.2(5)
132.8(5)
108.7(5)
89.7(5)
99.7(5)
143.8(6)
124.0(5)
93.2(5)
149.6(6)
123.0(8)
176.7(9)
177.3(10)
174.4(10)
122.0(7)
176.4(13)
173.6(11)
173.6(13)

Table 4. Selected Bond distances (A) for u-p-xylyl-{n*

Cp*W(CO))

W(IH—C(INCp*)
W(IH—C2)(Cp"
W({H—C3)(CpY)
W(IH—C4)(Cp*)
W(H—C(SHCp™)
W(Q)—C@21)(Cp*)
W(2)—C(22)(Cp™)
W(Q)—C(23)(Cp*)
W(2)—C(24)(Cp*)
W(2)—C25)(Cp")
W(1)—C(6)(CH,)
W(2)—C(26)(CH,)
W(H)—C(16)(0)
W(I)—C(7)(0)
W(1)—C(18)(0)
W(2)—C(36)(0)
W(©2)—C3E7)(0)
W(2)—C38)(0)

2.372(8)
2.330(8)
2.337(8)
2.358(8)
2.385(8)
2.332(8)
2.389(8)
2.368(9)
2.317(8)
2.329(8)
2.351(8)
2.372(8)
1.969(10)
1.976(9)
1.982(9)
1.989(9)
1.962(10)
1.996(10)
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Table 5. '"H-NMR spectra data compounds 1-6

Compounds” Phenylene Methylene Methyl (ppm)
1 7.01 (s, 4H) 2.22 (s, 4H) 1.91 (s, 30H)
2 6.92-6.77 (m, 4H) 2.21 (s, 4H) 1.92 (s, 30H)
3 6.90-6.74 (m, 4H) 2.20 (s, 4H) 1.91 (s, 30H)
4 6.94 (s, 4H) 2.35 (s, 4H) 2.03 (s, 30H)
5 7.09-6.74 (m, 4H) 2.18 (s, 4H) 2.10 (s, 30H)
6 7.07-6.73 (m4H) 2.25 (s,4H) 2.12 (s, 30H)

“Measured in CDCl, solutions.

Table 6. Infrared spectra data for compounds 1-6 2. Abel, E. W. and Moorhouse, S., J. Chem. Soc.,

Compounds* v(C=0) (cm™")

2002 (s), 1919 (vs)
2003 (s), 1921 (vs)
2005 (s), 1923 (vs)
1992 (s), 1911 (vs)
1996 (s), 1912 (vs)
1998 (s), 1914 (vs)

[ 7 I NV

“Measured in CH,Cl, solutions.

(CO),Cp*] of 2.3615(8) A (see Table 4). Furthermore,
all structural parameters are very reasonable if com-
pared to the literature values [11-13].

In summary, we have prepared and characterized
the a,a’-p-, m- and o-xylyl bridged dinuclear new com-
plexes of molybdenum and tungsten 1-6. We also
identified the molecular structures of complexes 1 and
5 to be anti conformers in solid states.
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